Air quality is deteriorating, the globe is warming, and petroleum resources are decreasing. The most promising solutions for the future involve the development of effective and efficient drive train technologies. This comprehensive volume meets this challenge and opportunity by integrating the wealth of disparate information found in scattered papers and research.
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles focuses on the fundamentals, theory, and design of conventional cars with internal combustion engines (ICE), electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV). It presents vehicle performance, configuration, control strategy, design methodology, modeling, and simulation for different conventional and modern vehicles based on the mathematical equations.
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles is the most complete book available on these radical automobiles. Written in an easy-to-understand style with nearly 300 illustrations, the authors emphasize the overall drive train system as well as specific components and describe the design methodology step by step, with design examples and simulation results.
This in-depth source and reference in modern automotive systems is ideal for engineers, practitioners, graduate and senior undergraduate students, researchers, managers who are working in the automotive industry, and government agencies.